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One way to intensify heat transfer between smooth surfaces is to use finning. Depending 
on the flow conditions, a stream of internal heat transfer agent is directed along the fin, 
normal to its surface, or it has a nonzero angle of attack, (0 < y < 90~ For the last 
two cases, as a rule, one observes separation of the outer flow and reverse flow behind the 
fin element. Heat transfer conditions for developed surfaces in separated flow was studied 
in [i-3]. We note, however, that these references considered surfaces at constant tempera- 
ture. For actual heat exchangers the temperature varies over the surface and for complete 
modeling one must consider the coupled problem, i.e., allow for simultaneous propagation of 
heat both in the heat transfer agent, and in the washed surface. 

In this paper, for the coupled problem we studied heat exchange conditions and determined 
the thermal efficiency of the fins in transverse flow (y = 90 ~ ) for some flow regimes and 
finned surface geometry. We considered surfaces with annular or planar finning (Fig. i, 
where a and b show inner and outer annular finning), and geometry and flow conditions such 
that a single vortex forms in the interfin space (Fig. 2a). These conditions were achieved 
at large enough Reynolds number Re and cell size, when the fin height h is comparable with 
the interfin distances. The hydrodynamic conditions of separated flow in cavities of this 
type have been studied in detail, e.g., in [4-7]. A region of potential vortex flow is 
formed in the cavity. This flow has a specific structure of velocity distribution, and the 
range of the velocity U v in a vortex varies from zero at the vortex center to a maximum 
value at the periphery. In general there is a dependence U v = f(Un) (U n is the velocity 
of the external potential flow outside the cavity). According to the results of experimental 
and theoretical investigations [4-7], in the cavities of the geometry studied, in regions of 
a vortex far from the center, the relation U v = kvU n (k v = 0.3-0.4) is valid. 

We consider a cavity geometry where there is curvature in the planes of intersection of 
the fin and the base. This geometry is typical for specific technologies in fabrication of 
finned surfaces, e.g., fabrication of finned surfaces by rolling. Here at the corner points 
there are no stagnation zones or secondary vortex flows. 

We postulate that the flow and heat transfer conditions are identical in each cell. The 
condition for the hydrodynamic flows to be identical in adjacent cells holds, as a rule, over 
an entire surface where the flow is established. An exception is the initial sections where 
the external flow conditions outside the interfin cells vary from cell to cell. Regarding 
the identical nature of heat transfer conditions, strictly speaking the postulate does not 
hold due to the variation of outer flow temperature from cell to cell. The temperatures in 
adjacent cells T v will differ. However, as is shown below, this difference does not appre- 
ciably influence the computed results. 

For the hydrodynamic flow conditions studied, as was noted by Bachelor and Squire [4], 
a boundary layer forms on the cell surface. The experimental investigations of the dynamic 
layer formed on the surface in the separated flow region, indicate a laminar boundary layer 
[7]. 

On the basis of the geometry considered and the above postulates the boundary layer is 
assumed to be continuous over the entire surface of the interfin cell (Fig. 2a). The boundary 
layer development is shown in Fig. 2b, where for simplicity of understanding the curved 
surface is shown as planar. The identical nomenclature of points of the wetted surface for 
different cells (Fig. 2) indicates identical hydrodynamic and thermal conditions in adjacent 
cells. The!flow schemel iand the formation of the boundary layer in an example of planar 
systems has been examined in more detail in [8]. 
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Before creating a mathematical model of the heat transfer of the systems studied 
we note that our aim is to determine the thermal efficiency of a fin and its local thermal 
characteristics. The characteristics found in solving this problem enable the design of 
various heat exchange structures for which the fin geometry and the hydrodynamic flow con- 
ditions are the same as those studied here. 

We now construct a mathematical model of heat transfer in the interfin cavity. Due 
to the coupled nature of the problem we must simultaneously solve the equations for transfer 
of mass, momentum and energy in the external heat transfer agent and of heat in the wetted 
object under conditions of coupling at the boundary. This approach is traditional and is 
used in the great majority of studies. Here we use a somewhat different approach which 
allows us to simplify the computing procedure to solve the coupled problem, and based on 
using the principle of local similarity of the boundary layer formed on the surface, and the 
method of superposition [9, i0]. The essence of the approach is to determine the general 
functional dependence between the density of heat flux removed from the surface at an 
arbitrary temperature, and the variation of temperature difference at the surface: 

q~(CD)==*(cD) T,(~)=O)-- T v+ ~ d~F(~,~) d~ J" 
0 

(1) 

x ij As the independent variable in Eq. (i) we took the Goertler variable ~ =-~- Un(~)d~, where 
0 

x is the current coordinate along the surface, (v is the pneumatic viscosity of the 
heat transfer agent, $ is the variable of integration, and Un($) is the velocity in the 
external potential flow corresponding to the coordinate $. The expression for the local 
heat transfer coefficient at constant surface temperature a*(r and the form of the in- 
fluence function for a non-finned section section F(~, $) are determined by solving the 
boundary layer equations. According to [9, i0] we can take the influence function as 
F(~, ~) = [i- (~/~)Cl]-C2. The coefficients c I and c2 depend on the type of boundary 

layer, the Prandtl number Pr and the external pressure gradient. Besides Eq. (i) there is 
another well-known dependence, in the form of a series [i0]. Dependences of the type of 
Eq. (I) were used to solve coupled heat transfer problems on developed surfaces in [11, 12]. 
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In the approximation that the body is thermally thin [13] we derive an equation describ- 
ing heat transfer in a circular or planar fin of variable cross section: 

d[ ~ r ]  
r ,~y 6 (v) y" W = q~ (Y) + q~ (v). (2) 

Here y is the current coordinate; % is the thermal conductivity of the fin material; 6(y) is 
its thickness; and q1(Y) and q2(Y) are the local heat fluxes removed from surfaces 1 and 2, 
respectively (see Fig. 2). For circular and planar fins n = 1 and n = 0. 

Taking into account that the origin of the boundary layer is formed near the face on 
side I, it is more convenient to use the relative variable y': for the external fin y' = 
Y2 - Y, for the inner fin y' = y - Yl, and for the plane surface y' = y. 

Assuming the base temperature to be constant and equal to To, we write expressions 
for the local heat fluxes removed from the fin surface (Fig. 2b): 

q~ (v) = ~*  (v ' )  [ ] dT 
T h -  T v + d~ F(v ' ,  ~)-d~ ; 

o 

( 3 )  

h+s 

q~ ( y )  ---- ~z* ( 2 h  + s - -  y ' )  Th - -  T v-}- d ; F  ( . h  -}- s - -  y , ~) 
2 h + s  

" '  ] 
~ " d r  

-6 d~F (2h + s - -  g ' ,  2h + s - -  ~ ) - j~  
h 

(4) 
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Fig. 5 

(T h is the face temperature, T v is the temperature of the vortex core). The presence of the 
two integral terms in Eq. (4) reflects the fact that the thermal boundary layer on side 2 has 
a pre-history of development on side 1 of the adjoining fin and on the base 3 (Fig. 2), and 
also takes account of the absence of temperature gradient along the base. 

Without accounting for the heat loss from the end surface of the fin, the boundary 
conditions in terms of the new variable y' have the form 

dS~! ~,---o = o. ~r(v' = h) = To. (5) 

In dimensionless variables Eq. (2) and the boundary conditions (5), taking account of Eqs. 
(3) and (4), take the form: 

[ ' 

[ 50 0 

5. v) ~ d~F (Vo v ,  - - v ,  Vo ~ j} -+ (v~f o~ + - ~)~ f d~F (Vo -~) 
0 V 

(6) 

dOdV ~,=o = ~  o ( v = 1 ) = t .  (7)  

Here V = y'/h; V 0 = 2 + s/h; O = (T - Tv)/(T 0 - Tv); 6'(V) = 6(V)/60; N 2 = ~c*h2/X60 is a 

h ,J characteristic parameter of the fin; 60 is the fin thickness at the base; ~c* =.~Tf dY'i~ 
0 

[u*(y') + u*(2h + s - y')] is the average heat transfer coefficient on the surfaces of an 
isothermal fin; n = i, y' = Y2 - Y, V~ = -y2/h for external annular finning; n = i, y' = 

Y - Yl, V 0 = yl/h for internal finning; n = 0, y' = y, V~ = 0 for planar finned surfaces. 

In the computations as ~*(V) we use an expression for the heat transfer coefficient 
on a constant temperature surface; 

~* (V) = go-77, Re~ I~V-m, (8) 

where Re h = Uvh/v; X T and v are the thermal conductivity and the kinematic viscosity of the 
heat transfer agent; and go is a parameter, depending on Pr, the pressure gradient and the 
flow regime. 
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The integral equation (6) with boundary conditions (7) was solved numerically by the 
Runge--Kutta method. The algorithm of the numerical solution for a circular fin is practically 
no different from the computing scheme for planar fins, as described in [8]. Taking into 
account that the boundary layer formed on the surface of the interfin cell is laminar, we 
assume c I = 3/4, c 2 = 1/3 [9, i0]. The computations were performed for external and internal 
annular fins, and also for fins on a plane surface with constant cross section ~'(V) = I. 
We assumed that s/h = I. The results are shown in Figs. 3-6. 

Before going on to analyze the computed results we should point out that the thermal 
characteristics found for the fins, expressed in dimensionless form, do not depend on the 
values of Tv, and are determined only by the parameters N 2 and V~. 

One of the initial hypotheses used in constructing the mathematical model is that 
conditions are isothermal in adjoining cells. In particular it was postulated that the 
temperatures T v are identical. However, they actually differ. The temperature in the 
leading cell in the flow direction T1v differs from T2v in the cell behind the fin. We 
estimate the influence of the error AT v = T2v -- Tlv on the computed results. To do this we 
replace T v in Eq. (3) by T I and T vin Eq. (4) byTe. The form of Eq. (6) relative to 8 = 
(T - TIv)/(T 0 - Tlv) is conserved, and in the second square brackets the quantity 8 h is 

transformed into 8 h + &Sv, where Aew= (T2v - T1v)/(T0 -- T1v)o Estimates show that over a 

wide range of variation of T v and T O the maximum value of A8 v does not exceed A% v ~ 0.I 

as a rule. As a result of the numerical calculation we found that accounting for 58 v when 

varying the parameters N 2 and V~ leads to a computing error not exceeding 2-5%. 

One of the chief integral thermal characteristics of a fin is its efficiency D, which 
is determined by the ratio q = Q/Qmax (Q is the total heat flux removed by the fin, Qmax = 

ac*(T - Tv)F is its maximum value possible for a fin with infinitely great thermal con- 
ductivity at surface temperature To, and F is the fin surface area). 

We shall show that with the computed a*(V), according to Eq. (8), the parameter go for 
a laminar boundary layer can be represented in the form go = A Pr ~ where A depends on 

the pressure gradient on the wetted surface. The influence of the pressure gradient on A 
in cavities was not investigated, and therefore as a first approximation in the computations 
we used its value for zero-gradient flows. 

The solid lines on Fig. 3 show the efficiency of planar and annular fins as one varies 
the characteristic parameter N 2, which determines the influence of the external hydrodynamic 
flow conditions, the geometry, and the thermophysical properties of the fin. Comparison of 
the curves obtained shows that in transverse flow over finned surfaces, for a given fin 
geometry s/h = i, with other conditions equal, the highest efficiency is found for internal 
annular fins, and the least efficiency for fins on the outside of the tube. This conclusion 
is valid also for geometry s/h ~ 1 with the condition that a single vortex is formed in the 
interfin cavity. 

Figure 3 also shows the efficiency of planar and annular fins as computed by the engineer- 
ing methods of [13], when the heat transfer coefficient on the fin surface is considered 
constant and equal to =~ (broken lines). A comparison of the curves shows overstimated 
efficiencies found by the engineering methods over a considerable region of variation of the 
parameter N 2. An exception is the region of large values of N 2, where using ac* in the 
calculations leads to reduced values of D compared with the values obtained by solving the 
coupled problem. 
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As follows from Fig. 4, the maximum heat transfer coefficients will be in the face 
region of the fin on the leading side where the boundary layer begins to form. To estimate 
the influence of the surface temperature on the heat transfer conditions we compare the 
local heat transfer coefficients found by solving the coupled problem (solid lines) with 
their values on an isothermal surface ~*(V), computed from Eq. (8) (broken lines). The 
comparison shows that the increase of the temperature difference along the surface on the 
leading side of the fin leads to an increased heat transfer coefficient ~I(V), and that 
el(V) increases with increase of N 2. 

Besides the computed heat transfer coefficients Fig. 4a shows the experimental values 
(found in [14]), expressed in the dimensionless form ~e/~c*, and takenfor a fin geometry 
s/h = 1.06 (dot-dash lines). The nature of the distributions of heat transfer coefficients 
on the forward fin surface coincides in general with e~(V), apart from a certain region 
near the fin root, this being due apparently to the different hydrodynamic conditions. 
The experimental model did not have the curvatures in the near-root zone that were assumed 
in the computed model, and in the base region of the fin secondary vortex flows or stagnation 
zones were formed. Further, on the surface of the base and of the trailing side of the 
fin the hydrodynamic conditions tested experimentally [14] and considered here differ sub- 
stantially. 

On the trailing side of the fin there is a further decrease of the local heat trasnfer 
coefficient (Fig. 4b). Typically, for N 2 > 1.5-2.0 one observes reversal of heat flux in 
regions adjacent to the face. In this region the heat transfer coefficient is negative. 
The reversal is due to deformation of the temperature profile in the boundary layer. This 
was first obtained in [15] and was examined in detail in [i0, 16], and has been applied to 
finned surfaces for other flow conditions, e.g., in [17]. For regimes for which there is 
heat flux reversal the behavior of local heat transfer characteristics differs qualitatively 
from the analogous characteristics found by solving the uncoupled problem. Therefore, in 
these situations one should solve the coupled problem. 

Figure 5a, b shows local heat flux distributions qi(V), (i = I, 2), removed from fin surfaces 
1 and 2, respectively. As can be seen on Fig. 5a, the maximum heat flux occurs near the face on the 
leading side of the fin. For small N 2 q1(V) decreases monotonically from the face surface 
to the fin base, but as N 2 increases the values of ql(V) reach a minimum at some distance and 
then increase. This behavior of ql(V) and an increase of the temperature difference (Fig. 6) 
from the face to the base. On the trailing side of the fin ~I(V) is substantially less 
than q2(V). For large N 2 the value of q=(V) in the face region becomes negative, i.e., for 
example, during cooling of a finned surface in the fin sections near the face one sees heating 
instead of cooling. There is an unusual "pumping" of heat from the trailing fin side to 
the leading side, where the values of ~I(V) are large and heat removal is a maximum. This 
leads to an increase of fin efficiency q (or of the total heat flux removed by the fin) in 
the region of large N 2, compared with values of q computed by the simplified methods, where 
these effects are not accounted for. 
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